Guideline development for offshore structure vibration analysis

ANDRII PISHCHANSKYI

SYNOPSIS

Table 1. Synopsis

<table>
<thead>
<tr>
<th>Section</th>
<th>Performed work</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Special studies</td>
<td>Mesh convergence: • beam; • cylindrical shell; • plate; • stiffened panel.</td>
</tr>
<tr>
<td></td>
<td>Parameter sensitivity: • material; • 1D vs. 2D vs. 3D finite elms.;</td>
</tr>
<tr>
<td></td>
<td>• effective modal mass; • added mass.</td>
</tr>
<tr>
<td></td>
<td>The design of a vibration isolation system.</td>
</tr>
<tr>
<td>3. Complex case</td>
<td>The local response of a retractable thruster.</td>
</tr>
</tbody>
</table>
INTRODUCTION

- Service limit state;
- High structural complexity;
- Modal analysis.

Working Hypotheses:
- Steady state response;
- No stress analysis;
- Periodic loading.

![Figure 1. Characteristics and sources of periodic loading: (a) simple; (b) complex](image)

BASIC SIMPLE STRUCTURES
BASIC SIMPLE STRUCTURES

DEFINITION OF OPTIMAL FINITE ELEMENT SIZE

Discrepancy, \(\Delta = \frac{\text{numerical} - \text{analytical}}{\text{analytical}} \) (1)

Figure 2. Simply supported beam

a). 7 elements, \(\Delta = -6.09\% \)

b). 15 elements, \(\Delta = -1.16\% \)

Figure 3. Mode shape with 5 half-waves

SIMPLE REAL CASE
SIMPLE REAL CASE

FREQUENCY RESPONSE ANALYSIS PROCEDURE

- Extract natural frequencies and mode shapes
- Define damping
- Apply excitation force
- Define a set of frequencies to be used in the solution of frequency response analysis

Figure 4. Flowchart of frequency response analysis

SIMPLE REAL CASE

MODAL ANALYSIS

Figure 5. Mode shape 1 of E-motor assembly
Figure 6. Mode shape 2 of E-motor assembly
SIMPLE REAL CASE
FREQUENCY RESPONSE ANALYSIS PROCEDURE

- Modal damping ratio $\zeta = 0.02$ is suggested for all modes to be conservative.
- The magnitude of unbalance excitation force:

$$ F_{unb} = me\omega^2 $$

(2)

![Figure 7. Force magnitude](image)

Figure 7. Force magnitude

![Figure 8. Decomposed force for main continuous rate](image)

Figure 8. Decomposed force for main continuous rate

SIMPLE REAL CASE
FREQUENCY RESPONSE ANALYSIS. NUMERICAL RESULTS

![Figure 9. Velocity at COG of E-motor](image)

Figure 9. Velocity at COG of E-motor

Conclusion:
Investigation into vibration isolation is reasonable.
SIMPLE REAL CASE

VIBRATION ISOLATION

The problem is solved by so-called force transmissibility:

$$T.R. = \frac{F_R}{F_0} = \frac{1 + (2\zeta^2)^2}{(1 - \zeta^2)^2 + (2\zeta)^2}$$ \hspace{0.5cm} (3)

$$F(t) = F_0 \sin(\omega t)$$

1. Define static load per chock
2. Select the stiffness of a chock
3. Select the damping of a chock

Figure 13. Flowchart of the design of a vibration isolation system

Figure 12. Model of vibration isolation

Figure 14. Transmissibility ratio
3. Select the damping of a chock which provides the desired isolation.

Figure 15. Transmissibility ratio as a function of r ratio

Figure 16. The magnification of isolation area

Conclusion:
- Resonance frequencies are shifted;
- Velocity with chocks are way below threshold.
COMPLEX REAL CASE

RETRACTABLE AZIMUTH THRUSTER

Conclusion:
Vibration influences structural design in the vicinity of the azimuth thruster.

Figure 18. Retractable azimuth thruster
Figure 19. FE modelling
COMPLEX REAL CASE

MODAL ANALYSIS

Figure 20. Pendulum mode of stem section about y-axis

Figure 21. Pendulum mode of stem section about x-axis

Figure 22. Bending mode of stem section about y-axis

COMPLEX REAL CASE

MODAL ANALYSIS

ANDRII PISHCHANSKYI

GUIDE DEVELOPMENT FOR OFFSHORE STRUCTURE VIBRATION ANALYSIS

EMSHIP
COMPLEX REAL CASE

DYNAMIC LOADING

- Only $F_{x,\text{dyn}}, F_{y,\text{dyn}}, F_{z,\text{dyn}}, M_{x,\text{dyn}}$ are used.
- A modal damping of 2% is considered.

Figure 23. Main static and dynamic forces

COMPLEX REAL CASE

NUMERICAL RESULTS

Figure 34. Velocity of COG of gearbox foundation
CONCLUSION AND FUTURE PROSPECTS

CONCLUSION

• The flowchart of vibration analysis and the instructions for its implementation are given;
• The suitability of analysed analytical solutions for the definition of optimal FE size is investigated;
• Required sensitivity studies are performed;
• Modal analysis as a means to identify resonance beforehand is described;
• Static FE model is adapted for the purpose of vibration analysis;
• Local and global vibration responses are obtained;
• Vibration isolation system is designed.
FUTURE PROSPECTS

- Specify the local response of azimuth thruster with the precise mean values of loading as the functions of steering angle and ship speed;
- Consider hydrodynamic added mass for the submerged surfaces.

THANK YOU FOR YOUR ATTENTION
WWW.EMSHIP.EU